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Abstract. Ising systems are approximated by a generalized mean-field approximation in 
which only some of the interactions are replaced by their expectation values. If all the 
interactions are positive then it is shown that a self-consistent solution exists for the magneti- 
zation in this model and that it gives an upper bound for the true magnetization. Using this 
mean-field approximation, a generalization of the random-phase approximation is obtained. 
This is shown to give an upper bound for the two-spin correlation functions. 

1. Introduction 

One of the most widely used approximations in statistical mechanics is the mean-field 
approximation. As well as being used frequently in the interpretation of experimental 
results, it is also of interest for a number of purely theoretical reasons. The mean-field 
approximation becomes exact for certain long range forces. In the present work the 
concept that will be considered is that the mean-field approximation gives rigorous 
bounds for various thermodynamic quantities. There are a number of results of this 
type in the literature (Fisher 1967, Thompson 1971). The following work generalizes 
some of these earlier results by considering a model in which only some of the interactions 
are treated by their mean-field approximations while the remainder of the interactions are 
treated exactly. One of the earliest applications of this type of approximation was by 
Stout and Chisholm (1962). This approximation has also been used to obtain bounds 
for the anisotropic Ising system (Enting 1973a, b). 

Section 2 gives the proof, in full, of the basic result that if all interactions in a system 
are ferromagnetic then replacing any of the interactions by its mean-field equivalent 
will increase the expectation value of any of the spins. In 0 3 this result is related to the 
generalized mean-field approximation. It is shown that this generalized approximation 
will actually have self-consistent solutions for the expectation values of the spins and 
that these solutions are upper bounds for the true expectation values. The relationship 
between these results and the work of Thompson (1971) is discussed. In 0 4, expressions 
are obtained for the approximate two-spin correlation functions. These approximations, 
which are shown to correspond to a generalized random-phase approximation, give 
upper bounds for the exact two-spin correlation functions. Summing these correlation 
functions, one recovers bounds for the susceptibility of the type considered by Enting 
(1973a, b). 

In 0 5 a number of systems for which these bounds are useful, are considered. Since 
the susceptibility bounds sometimes predict a variation of critical temperature of the 
type obtained from scaling theory it is of interest to consider the circumstances under 
which this scaling result may be expected to hold. 
t Present address: King’s College, Strand, London. 
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2. Bounds for a single replacement 

The basic hamiltonian that will be considered is 

The ea are a set of Ising spins, & 1 indexed by {a) .  {a,  a'} is the set of all pairs of indices. 
In all the sums over this set that will be used, it is sufficient to sum only over those pairs 
for which Jaa, is nonzero. 

The thermodynamic quantities are regarded as being functions of the variables 
J,,./T 2 Oand XJT 2 0. The prooffollowing is only valid when these quantities are non- 
negative. In the special case of all Xa equal they will be denoted by the variable %. 

The main result that will be proved in this section is that if hamiltonian (1) is modified 
by replacing one interaction -Jaa,oaoa, by - Jaa,((oa)oo, + (aa,)oa) then the expectation 
value of every spin is increased. The expectation values above are calculated from a 
hamiltonian in which neither Jaa,oaoa, nor its mean-field equivalent is present. 

To concentrate attention on only one interaction, we write (1) in the form 

H = R -  Jorgs (2) 
and put 

G = R-J(~s,)o,-J(o,)Is, (3) 
where 

( ) = (  >s .  (4) 

Using the expression used by Thompson (1971) one has 

where 

For any hamiltonian of type (i) it can be proved that 

and 

These results have been proved (for more general hamiltonians than (1)) by Kelly and 
Sherman (1968). 
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Another result that will be needed is that given by Griffiths et a1 (1970): 

(aaaras>-(aaar>(as>-(aras>(aa>-(asaa>(ar> +2(oa)(or)(as) 6 0. (13) 

It is also necessary to use the obvious fact that 

(aa) 6 1. (14) 

Returning to the ‘mean-fieId’ form defined by (3) we have 

These are merely particular cases of the relation : 

tanh ab - a tanh b 2 0, O G a 6 1 ,  b 2 0. (17) 

The equality holds for b = 0 and the derivative of (17) with respect to b is 
a(tanh b - tanh ab)(tanh b + tanh ab) which is positive if 0 < a G 1 and b > 0, and so 
(1 7) is true in this range. Multiplying (1 5 )  and (16) gives 

qrqs 2 ( O s ) U q s +  (ar)uqr-v’(or)(gs). (18) 

This result now enables us to prove the basic assertion that 
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3. Generalized mean-field solutions 

In general, mean-field solutions are obtained by means of a self-consistent equation. 
For the replacement considered in the previous section, the self-consistent equation 
would be found by calculating expectation values from the hamiltonian 

G' = R - J ( ~ r ) c . ~ , - J ( ~ s ) G . a r .  (24) 

To examine this bound, we construct a sequence of hamiltonians 

G(0) = G 

G(n) = n - J ( a r ) G ( n -  1 ) a s -  J( ' s )G(n-  1 ) o r .  (25) 

For all spins aa, (a,), 2 (a,), and by (1 1) which implies that all expectation values 
are increasing functions of the interaction strengths, one has by induction, 

(aa)G(n) 2 (aa)G(n- 1 ) .  (26) 

Since the sequence of ( o ~ ) , ( ~ )  is increasing and is bounded above by 1.0, it must 
have a limit : 

The values (as)G(m) are self-consistent solutions of (24) (a formal proof of 
this based on the definition of the limit of a sequence is trivial) and so the arguments 
above have proved the existence of a solution of (24) and have shown that (a,),. gives 
an upper bound for (a,),. 

What is really interesting is to consider a succession cf replacements of the type 
considered in the previous section. 

Rewriting hamiltonian (1) as 
m 

H = H o -  I* J b b , C b O b ,  = Ho- J ( k ) O b ( k ) a b , ( k )  (28) 
W W l E  {a,a'l k =  1 

k is an integer used as an index for the m interactions considered explicitly in (28). 

following 'approximate' hamiltonians that give bounds for spin expectation values: 
(28) is taken to be the basic or 'true' hamiltonian. It is convenient to consider the 

n 

H(n)  = H O  - 1 J ( k X ( a b ( k ) ) H ( k ) a b ' ( k )  + ( a b ' ( k ) ) H ( k ) a b ( k ) )  
k =  1 

so 
H(0)  = H (30) 

H*(n) = Ho- 1 J ( k N ( a b ( k ) ) H * ( n -  l ) a b ' ( k )  + ( a b ' ( k ) ) H * ( n -  l ) O b ( k ) )  (31) 

H*(O) = H(m). (32) 

m 

k =  1 

The results above show that which is defined by self-consistent equations, 
exists and 

(aa)H(n) 2 (a,),. (33) 
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In a manner completely analogous to the proof of (26) one has 

(ca)H*(n+ 1) 2 (Oa)H*(n) (34) 

and since the sequence of ( o ~ ) ~ , ( ~ )  is bounded and increasing there is a limit ( c T ~ ) ~ * ( ~ )  

which corresponds to self-consistent solutions of 

In the end, combining the inequalities gives 

(aa>H'  2 (ca)H* (36) 

In the proof given by Thompson (1971) it is not possible to consider replacing only 
some interactions by their mean-field equivalents, so the present proof still represents a 
significant advance. Firstly it has been possible to prove the existence of self-consistent 
solutions of the generalized mean-field hamiltonians. Secondly, in establishing (36) 
it has not been necessary to appeal to the translational invariance of the system. Since 
one does not have to have all spins equivalent, the result (36) will apply to the analogue 
system defined by Griffiths (1969) to represent spins other than 3. This makes it straight- 
forward to generalize most of the results presented here to the case of Ising systems with 
arbitrary spin. 

The main limitation on the range of validity of these bounds comes from equation (13). 
In particular this equation has not been proved for systems with four-spin interactions. 
In principle one can find bounds for such systems by a simple generalization of the 
graphical expressions obtained by Fisher (1967). It is, however, not possible in general to 
express these bounds as closed form expressions. 

4. Generalized random-phase approximation 

Referring back to hamiltonian (1) we note that it is a function of the independent variables 
Jaa,/T, HJT. Denoting derivatives with respect to Ha with the other independent variables 
fixed, byd/dZa and using to denote differentiating only the explicit Ha dependence, 
ie {(es)} fixed, one has from (31) 

In the high temperature region at H = 0 one has 

( 0 a ) H  = (ba)H*(m) = 

(38) becomes 

(39) 
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The derivatives are investigated by putting Xa = SXa so 

('b)HIdJ(D. G ('b)H*(m)lddP. G (bb)H*(m+ 1)ldr4.. 

So dividing by SXa + 0, one has for high temperatures, 

d:$H j j p =  d('b)H*(m) 1 
d% .w=o 

Assuming that 

1883 

(41) 

one can take the limit of (40) and find 

The right-hand side of (44) corresponds to a generalized random-phase approxima- 

If one has hamiltonian (1) in the form 
tion GRPA. 

H = H , -  C 1 J(aj)o(ri)o(ri+aj) 
ri a j  

(45) 

then it is possible to solve equation (44) in reciprocal space, if one has translational 
invariance. (This necessitates taking a thermodynamic limit N -, 00 at this point.) 

Putting 

( o ( r b ( r ' ) > G R , ~  = C(r' - r )  (46) 

(a(r)a(r')>H, = c O ( r ' - r )  (47) 

and 
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Because the exp(iq . r )  are not positive numbers in general, the C(q) is not a bound 
for the true value, except in the case of q = 0 where one has the zero-field susceptibility 
which is given by a sum over equation (44). 

The bound (44) is a generalization of the result due to Fisher (1967) that the random- 
phase approximation gives an upper bound for the two-spin correlation functions. The 
susceptibility bound obtained by summing (44) or putting q = 0 in (50) corresponds to 
the susceptibility bounds quoted by Enting (1973a, b). 

5. Applications 

5.1. The  anisotropic Ising model 

In equation (45) H ,  corresponds to L two-dimensional layers each of which is a simple 
quadratic Ising system. The vectors aj are given by (0, 0, 1) for an anisotropic sc lattice 
and (0, i, t), (0, -1, i), (i,O, f) and (-4, 0, i) for an anisotropic FCC lattice. In this latter 
case the layers are staggered with respect to each other. The limit L -+ cc is taken and 
the layers are taken to the limit of an infinite two-dimensional system. Summing the 
correlation bounds of the previous section, ie taking q = 0 in (50) gives 

where N is the number of spins per layer. z is the number of interlayer bonds from each 
site, 2 in sc, 8 in FCC. q J  is the interplane interaction strength. 

Since one has that the two-dimensional susceptibility 

x 2 D  - (T- T,(2D))-7’4 (52) 

(T*(q ) -  T,(q = 0))  N q4’7. (53) 
Since the bound (51) is valid above the critical point (equation (42) uses (6,) = O), 

the bound implies that the singularity in x(T,q) must be at some temperature below 

from Fisher (1959), the expression (51) will diverge at T*  where 

T*(q) 

T,(q)- T,(v = 0) G T*(q) -  T,(q = 0) ‘v q4” 

U q ) -  T,h = 0) ‘v Vl i4  

(54) 

( 5 5 )  

so that if 

then 

q5 < g. 
If one actually has 4 = as indicated by the latest series analysis results (Krasnow 

et a1 1973) then equation (54) can be used to obtain a bound for the amplitude of the 
singularity in T,(q) (Enting 1973~). 

5.2. Two-layer systems 

Taking L = 2 for the number of layers in systems described in the previous section gives 
a two-layer system. Scaling theory predictions (Abe 1970, Mikulinskii 1971) suggest 
that the variation of T, should be of the form ( 5 5 )  with 4 = $. 
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If one considers a system with L = c/3 as in the previous section and treats the 
coupling between alternate pairs of layers by a mean-field approximation then one has, 
using (1 2) 

(57) 7 4L=2 < 4L=m < $ and 4L=m < yL=, = 5.  

5.3. Second-neighbour Ising systems 

On the FCC lattice, the L = 2 system described above is isomorphic to a second-neighbour 
Ising system in two dimensions. The nearest-neighbour interaction J ,  , corresponds to 
qJ while the second-neighbour interaction J ,  corresponds to the intraplane interaction 
of the two layer system. 

The bound on critical temperature becomes 

T,(J , ) -  T , ( J ,  = 0) < T*(J,)-  T , ( J ,  = 0) ff J;’”. (58)  

T , ( J ,  = 0) is given by Kramers and Wannier (1941): tanh(J,/kT,(J, = 0)) = J2-  1. 

field approximation so that 
It is also possible to treat the J ,  interaction exactly and the J ,  interaction by a mean- 

T,(J,)- T,(J, = 0) < T*(J,) - T,(J ,  = 0) ff J y 7  

T,(J,)- 7 3 ,  = 0) - J;’@ 

4 < i. 

so that if 

then 

In this case the actual behaviour seems to be that T,(J , )  varies analytically through 
J ,  = 0 so that 

4 = 1. (62) 

The smoothness postulate (Griffiths 1971) provides a ready explanation of why this 
last case has an analytic T,(J,) while all previous examples appeared to have singularities 
in T,. The argument treats a line of critical points as the boundary of a first-order transi- 
tion surface and predicts changes in the behaviour of the critical properties only when 
the nature of the first-order transition changes. The first-order transition here is on 
varying the applied field H through S = 0 to reverse the direction of the magnetization. 
If one has a coupling strength q connecting two independent sublattices then this first- 
order transition disappears for q < 0 as there is never any spontaneous magnetization 
so one cannot have the situation of a finite change in magnetization for an infinitesimal 
change in field. One would therefore expect singularities of the scaling law type only 
when the scaling parameter represents a coupling between two independent sublattices. 

In the three-dimensional second-neighbour system J = 0 corresponds to two 
independent FCC lattices so it would be expected that the bound 

T,(J , ) -T , (J ,  = 0) < T*(J , ) -T , (J ,  = 0) - Jf’5 (63) 

may actually describe the singularity in T,, 
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6. Conclusions 

In the preceding sections a generalized mea2-field approximation has been discussed. 
It has been shown that self-consistent solutions exist for this approximation and that 
these solutions give upper bounds for the true solutions. These bounds have been used 
to obtain bounds for the exponent describing the variation of critical temperature. The 
formal definition of these exponents involves defining them in terms of limits, a procedure 
which is quite straightforward. From (50), 

1 - 1 pJ(aj)C,(q = 0, T*) = 0 
“ j  

at T* an upper bound for T,  

(66) ln(T,-T,(O)) < ln(T*-T,(O)) < 0, for small J(aj). 

so 

and 

In Xp*J(a j )  
In( T,(v) - T,(O))  

In C(q = 0, T*) 
In( T* - T,(O))  4 = lim < -1im = Y  

y is the susceptibility exponent for J(aj) = 0. 
These bounds on the ‘crossover exponent’ describing the variation of critical tempera- 

ture correspond to the scaling-law predictions. It has been pointed out that although 
these bounds are valid for a number of situations, in many cases the limiting behaviour 
of the critical temperature may not be of the same form as the bounds. The smoothness 
postulate can be used to decide if the critical temperature is likely to have a singularity. 
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